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Definition 1:- Consider a linear map T : V → W . Let BV = {v1, v2, ...., vn}
and BW = {w1, w2, ...., wm} form a basis for V and W respectively. For a fixed
vector vj ∈ BV we can always write T (vj) as a unique linear combination of
basis vectors for W . i.e. T (vj) =

∑m
i=1 aijwi for some scalars aij ∈ R. We call

this (aij) as the coordinates of T (vj) w.r.t. basis BW . Note that this (aij) is a
collection of m no of scalars which can be seen as a column matrix in usual sense.
Similarly we can write the coordinates of T (vj) for all 1 ≤ j ≤ n. On putting
these obtained coordinates (to be precise n no of coordinates of n vectors in W )
together in a particular order we get a matrix of order m × n (as there are n
column matrices with each matrix containing m no of scalars). We denote this
obtained matrix by [M(T )]BV

BW
whose jth column is the coordinates of T (vj)

w.r.t. basis BW .
Hence our [M(T )]BV

BW
looks like a11 · · · a1n

...
. . .

...
am1 · · · amn


Let us see an application of this matrix [M(T )]BV

BW
.

We can uniquely write v ∈ V as a linear combination of vectors in BV . i.e.
v =

∑n
j=1 ajvj . v w.r.t. BV looks like a1

...
an


We denote it by [v]BV

. Similarly We can also write T (v) uniquely as T (v) =∑m
i=1 biwi. Hence T (v) w.r.t. BW looks like b1

...
bm


We denote it by [T (v)]BW

. We claim that [M(T )]BV

BW
[v]BV

= [T (v)]BW

Proof:- Let T (vj) =
∑m
i=1 cijwi such that cij is the ith row and jth column of

matrix [M(T )]BV

BW
.

v =
∑n
j=1 ajvj

⇒ T (v) = T (
∑n
j=1 ajvj) (applying T on both sides)

⇒ T (v) =
∑n
j=1 ajT (vj) (as T is a linear map)

⇒
∑m
i=1 biwi =

∑n
j=1 aj(

∑m
i=1 cijwi)

⇒
∑m
i=1 biwi =

∑n
j=1(

∑m
i=1 ajcijwi) (W is distributive over a scalar among

vectors)
⇒
∑m
i=1 biwi =

∑n
j=1(

∑m
i=1 ajcij)wi (W is distributive over a vector among

scalars)
⇒
∑m
i=1 biwi =

∑m
i=1(

∑n
j=1 ajcij)wi (W is associative over addition)

⇒
∑m
i=1 biwi =

∑m
i=1(

∑n
j=1 cijaj)wi (R is commutative over addition)

⇒
∑m
i=1(bi −

∑n
j=1 cijaj)wi = θW

⇒ bi =
∑n
j=1 cijaj for 1 ≤ i ≤ m (as BW is linearly independent in W )
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⇒ bi1 =
∑n
j=1 cijaj1. This proves our claim.

Let us look at an example.
Consider a linear map R3 → R2 defined by T (x, y, z) = (x + y, y). BV =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} be basis for R3 and BW = {(1, 0), (0, 1)} be basis for
R2. Take v = (1, 2, 3) ∈ V on direct computation we get T (1, 2, 3) = (3, 2). Let
us try the other way round. (1, 2, 3) = 1(1, 0, 0) + 2(0, 1, 0) + 3(0, 0, 1). Hence

[v]BV
=

 1
2
3


T (1, 0, 0) = (1, 0) = 1(1, 0) + 0(0, 1)
T (0, 1, 0) = (1, 1) = 1(1, 0) + 1(0, 1)
T (0, 0, 1) = (0, 0) = 0(1, 0) + 0(0, 1)

[M(T )]BV

BW
=

(
1 1 0
0 1 0

)
[M(T )]BV

BW
[v]BV

=

(
1 1 0
0 1 0

)  1
2
3

 =

(
3
2

)
= [T (v)]BW

Hence T (v) = 3(1, 0) + 2(0, 1) = (3, 2) which clearly matches with direct com-
putation.

Result 1:-
Consider a vector space V overR. LetB1 = {v1, v2, ..., vn} andB2 = {w1, w2, ..., wn}
are two basis for V . Say we know the coordinates of a vector v ∈ V w.r.t. basis
B1. Question that comes obvious to mind that what will be the coordinates of
v w.r.t. basis B2. We intuitively consider Identity linear map from V to itself
in a manner that we express coordinates of v w.r.t. basis B1 and express its
image (which is same as v) coordinates w.r.t. basis B2 and try to find out how
both of them are related.
I(vj) = vj
⇒
∑n
i=1 bijwi = vj

v =
∑n
j=1 ajvj

⇒ I(v) = I(
∑n
j=1 ajvj)

⇒
∑n
i=1 ciwi =

∑n
j=1 ajvj

⇒
∑n
i=1 ciwi =

∑n
j=1 aj(

∑n
i=1 bijwi)

⇒
∑n
i=1(ci)wi =

∑n
i=1(

∑n
j=1 bijaj)wi (on rearranging)

⇒ ci =
∑n
j=1 bijaj

i.e. [M(I)]B1

B2
[v]B1

= [v]B2

Result 2:-
Let U, V and W be three vector spaces. Consider three linear maps T1 : W → V ,
T2 : U → W and T3 : U → V such that T1 ◦ T2 = T3. Let BU = {u1, ..., ur}
be a basis for U , BV = {v1, ..., vn} be a basis for V and BW = {w1, ..., wm} be
a basis for W . We wish to find a relation between [M(T1)]BW

BV
, [M(T2)]BU

BW
and

[M(T3)]BU

BV

Claim:- [M(T2)]BU

BW
[M(T1)]BW

BV
= [M(T3)]BU

BV

Proof:- For wk ∈ BW , T1(wk) =
∑n
i=1 aikvi, for uj ∈ BU , T2(uj) =

∑m
k=1 bkjwk

and for uj ∈ BU , T3(uj) =
∑n
i=1 cijvi

⇒
∑n
i=1 cijvi = T3(uj) = T1 ◦ T2(uj)
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= T1(
∑m
k=1 bkjwk)

=
∑m
k=1 bkjT1(wk)

=
∑m
k=1 bkj(

∑n
i=1 aikvi)

=
∑n
i=1(

∑m
k=1 aikbkj)vi (on rearranging)

⇒ cij =
∑m
k=1 aikbkj (as BV form a basis for V )

Definition 2:- Let V be a vector space over F . A map T : V → V is said
to be diagonalisable if there exists a basis BV for V such that [M(T )]BV

is a
diagonal matrix.

Definition 3:- Let V be a vector space over F . T : V → V be a linear map.
λ ∈ F is said to be an eigenvalue of T if there exists x ∈ V \ {θV } such that
T (x) = λx. We call this x ∈ V \ {θV } eigenvector corresponding to eigenvalue
λ.
Consider Eλ(⊂ V ) = {x ∈ V : T (x) = λx}. Clearly θV ∈ Eλ. Also it follows
from definition that Eλ 6= {θV } iff λ is an eigenvalue of T . We claim that Eλ is
a subspace of V . Take x1, x2 ∈ Eλ
⇒ T (x1) = λx1 and T (x2) = λx2
⇒ T (x1 + x2) = T (x1) + T (x2) = λx1 + λx2 = λ(x1 + x2) (Using linearity of T
and definition)
⇒ x1 + x2 ∈ Eλ
Take x ∈ Eλ and α ∈ F ⇒ T (x) = λx
T (αx) = αT (x) = α(λx) = λ(αx)
αx ∈ Eλ. Hence Eλ is a subspace.

Definition 4:- If λ is an eigenvalue of T , then Eλ is called the corresponding
eigenspace of V .

Result 3:- Let λ and µ be two eigenvalues of T . x(6= θV ) ∈ Eλ ∩ Eµ iff λ = µ
Proof:- Let x(6= θV ) ∈ Eλ ∩ Eµ. x ∈ Eλ ⇒ T (x) = λx = µx (as x ∈ Eµ also)
⇒ (λ− µ)x = θV
⇒ λ− µ = θV (as x 6= θV )
⇒ λ = µ.
Let λ = µ as λ is an eigenvalue of T there exists x(6= θV ) ∈ Eλ(= Eµ).

Result 4:- Let x and y be two eigenvectors of T corresponding to two distinct
eigenvalues λ and µ respectively. x and y form a linearly independent set in V .
Proof:- Let x and y are linearly dependent. i.e. there exists atleast one non zero
coefficient in linear combination of these two vectors. Without loss of generality
let α 6= 0 in αx+ βy = θV ⇒ x = −β

α y
⇒ x ∈ Eµ (as Eµ is a subspace of V )
⇒ x(6= θV ) (as x is an eigenvector) ∈ Eλ ∩ Eµ
⇒ λ = µ (contradiction)

Definition 5:- Let V be a vector space over F . W ≤ V (≤ stands for sub-
space). Let a map T : V → V be linear. W is said to be T−invariant if
T (W ) ≤W . i.e. ∀w ∈W , T (w) ∈W .
Examples:- (i) {θ} and V are T−invariant.
(ii) ker T and Im T are T−invariant.
Proof:- Take x ∈ ker T ⇒ T (x) = θV ∈ ker T .
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Take x ∈ Im T ⇒ T (x) ∈ Im T (as T (x) ≤ V )
(iii)Eλ is T−invariant.
Proof:- x ∈ Eλ ⇒ T (x) = λx ∈ Eλ (as Eλ ≤ V )

Definition 6:- Let V be a vector space over F . Let W ≤ V and U ≤ V .
We say that V is direct sum of W and U and write W ⊕U if ∀v ∈ V there exists
unique w ∈W and u ∈ U such that v = u+ w.

Definition 7:-We say that T : V → V has an eigen basis if there exists a basis
such that each vector in the basis is an eigenvector.
Consider a result involving definition 6 and definition 1. A map T : V → V
is diagonalizable iff there exists an eigen basis. Let us try to prove it. Let
T : V → V be diagonalizable over F and let dim V = n . There exists a basis
BV such that [M(T )]BV

is a diagonal matrix. We claim that this particular
basis is an eigen basis. Let BV = {v1, ..., vn} be that basis.

j column of the diagonal matrix looks like



0
...
αj
0
...
0


. Hence T (vj) = 0.v1 +

...αjvj + 0.vj+1 + ...+ 0.vn or T (vj) = αjvj . This proves our claim for forward
implication. Similarly we can prove reverse implication.

Result 5:- V = U ⊕ W iff V = U + W and θV is a unique sum of vectors
in U and W . u+ w = θV ⇒ u = θV = w
Proof:- Forward implication is established as we take v in particular θV . For
reverse implication let there exists u1, u2 ∈ U and w1, w2 ∈ W such that
v = u1 + w1 = u2 + w2 ⇒ (u1 − u2) + (w1 − w2) = θV (as U ≤ V and
W ≤ V ⇒ u1 − u2 ∈ U and w1 − w2 ∈W )
⇒ u1 = u2 and w1 = w2. Hence V = U ⊕W

Result 6:- Let V be vector space over F of dimension 2. T : V → V be linear.
Let λ and µ be two distinct eigenvalues of T , then T has an eigen basis. More
over V = Eλ ⊕ Eµ.
Proof:- Take x ∈ Eλ and y ∈ Eµ. BV = {x, y} form a linearly independent set
in V by result 4. As dimension of V is 2, BV is in fact a basis for V . Hence
T has an eigen basis. For v ∈ V , v = αx + βy where αx ∈ Eλ and βy ∈ Eµ.
Hence V = Eλ + Eµ. Take u ∈ Eλ and w ∈ Eµ such that u+ w = θV .
⇒ u = −w ⇒ u ∈ Eµ (as Eµ is an subspace)
⇒ u ∈ Eλ ∩ Eµ
⇒ u = θV (as λ and µ are distinct from Result-3)
⇒ w = −u = θV
Hence V = Eλ ⊕ Eµ

Result 7:- Let V = U ⊕W
(i) iff V = U +W and U ∩W = {θV }
(ii) dim V =dim U+dim W
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Proof:- (i)Let V = U ⊕W , by definition V = U +W . x ∈ U ∩W , θV = x− x
⇒ x = θV (using Result 5)
For reverse implication let V = U + W and U ∩W = {θV }. Let x + y = θV
where (x ∈ U and y ∈W ) ⇒ x = −y ∈W
⇒ x ∈ U ∩W
⇒ x = θV and y = −x = θV . Form Result 5 it follows that V = U ⊕W .
(ii) Let BU = {u1, ..., um} and BW = {w1, ..., wp} be basis for U and W respec-
tively. Our claim is that BU ∪BW is a basis for V . Take v ∈ V . v = u+w (for
some w ∈W and u ∈ U)
⇒ v =

∑m
i=1 αiui +

∑p
j=1 βjwj for some scalars αi, βj ∈ F (as BU and BW are

basis for U and W respectively)
⇒ v ∈ span (BU ∪BW )
Consider

∑m
i=1 αiui +

∑p
j=1 βjwj = θV∑m

i=1 αiui = −(
∑p
j=1 βjwj) ∈ U ∩W

⇒
∑p
j=1 βjwj = θV ⇒ βj = 0 ∀j (as BW is a basis for W )

⇒
∑m
i=1 αiui = θV ⇒ αi = 0 ∀j (as BV is a basis for V )

BU ∪BW is a linearly independent set in V . Hence BU ∪BW is a basis for V .
dim U+dim W=dim V (as BU and BW are disjoint sets. This follows from the
fact that basis BU ∪BW contains distinct vectors in V )

Result 8:- Let T : V → V and V = U ⊕ W such that both U and W are
T−invariant. Let BU = {u1, ..., um} and BW = {w1, ..., wp} be basis for
U and W respectively. BV = BU ∪ BW is a basis for V . We wish to see
how the matrix [M(T )]BV

looks like. T (ui) ∈ U for 1 ≤ i ≤ m , T (ui) =
a1iu1 + a2iu2 + ... + amium + 0.w1 + ... + 0.wp i.e. [M(T )]BV

will have all
the terms zero after m th row upto m + p th row for 1 ≤ t ≤ m (where t
stands for t th column of the matrix. Similarly T (wi) ∈ W for 1 ≤ i ≤ p ,
T (wi) = 0.u1 + 0.u2 + ...+ 0.um + b1iw1 + b2iw2 + ...+ bpiwp i.e. [M(T )]BV

will
have all the terms zero starting from 1 st row upto m th row for m ≤ t ≤ m+p.

So matrix [M(T )]BV
=



a11 · · · a1m 0 · · · 0
...

. . .
...

...
. . .

...
am1 · · · amm 0 · · · 0

0 · · · 0 b11 · · · b1p
...

. . .
...

...
. . .

...
0 · · · 0 bp1 · · · bpp


or [M(T )]BV

=

(
A O
O B

)
where A(size m×m) , B(size p× p) and O(one of

size p× p and another is of size m×m) are block matrices.
Similarly if V = W1 ⊕ ...⊕Wk where Wis are T−invariant subspaces of V with
basis Bwi

respectively. Then we can say there exists a basis BV = ∪ki=1BWi

such that [M(T )]BV
=



[M(T )]BW1

[M(T )]BW2

. . .

. . .

[M(T )]BWk


where [M(T )]BWi

is the matrix corresponding to the same map restricted to Wi

which is T : Wi →Wi. Other blocks are O of corresponding size.
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If λ1, ..., λk are k distinct eigenvalues with Eλ1
+ ... + Eλk

= V then V =
Eλ1
⊕ ...⊕ Eλk

. Note that this follows from Result 3.

Result 9:- There exist a polynomial f(X) ∈ R[X] \ {0} with degree less than
equal to n2 such that each matrix of size n× n satisfies.
Proof:- Let V = Mn(R) , where Mn(R) is set of all n × n matrices. It is clear

that dim V = n2. Consider A ∈ V and a set {I, A,A2, ..., An
2} ⊂ V . It contains

more than n2 vectors in V . Hence it is a linearly dependent set in V i.e. there
exists ais not all zero such that a0 + a1A+ ...+ an2An

2

= O (O ∈ V )
⇒ ∃f(X) ∈ R[X] \ {0} with degree f(X) ≤ n2 such that f(A) = O

Definition 8:- Let A be a square matrix. The polynomial det (A − XI) in
X is called the characteristics polynomial of A. It is denoted by pA(X). Let
pA(X) = (X − λ1)n1 ...(X − λk)nk . Then λi (1 ≤ i ≤ k) are the eigenvalues of
A.

Definition 9:- Lt A be a square matrix. We say that mA(X) is the minimal
polynomial of A if mA(A) = O and it is of least degree.

Consider an example. Let A =

 1 0 1
0 1 0
0 0 1


Characteristics polynomial for A is (X − I)3. But A also satisfies (X − I)2.
Hence (X − 2)2 is the minimal polynomial of A. i.e. pA(X) = (X − I)3 and
mA(X) = (X − 1)2.

Result 10:-Let T : V → V be linear. Suppose mT (X) = p(X)q(X) where
p(X) and q(X) are relatively prime. V = ker p(T )⊕ ker q(T ).
Proof:- From Euclids algorithm we know that ∃f(X), g(X) ∈ R[X] such that
p(X)f(X)+q(X)g(X) = 1. In particular for T we have p(T )f(T )+q(T )g(T ) =
I.
p(T )f(T ) + q(T )g(T )(v) = I(v)
p(T )f(T )(v) + q(T )g(T )(v) = v
Consider q(T )(p(T )f(T )(v)) = f(T )(p(T )q(T )(v)) (as p(T ), f(T ), q(T ) com-
mute)
= f(T )(θV ) (as mT (T ) = P (T )q(T ) = O where O : V → V is the zero map)
= θV . Hence (p(T )f(T ))(v) ∈ ker q(T ). Similarly we can show that (q(T )g(T ))(v) ∈
ker p(T ). This shows that V = ker p(T )+ ker q(T )
Consider v 6= θV ∈ ker p(T )∩ ker q(T ). This implies p(T )(v) = θV and
q(T )(v) = θV
Consider p(T )f(T ) + q(T )g(T )(v)
= f(T )(p(T )(v)) + g(T )(q(T )(v))
= f(T )(θV ) + g(T )(θV )
= θV = I(v) = v (contradiction to v 6= θV )
ker p(T )∩ ker q(T ) = {θV }. Hence V = ker p(T )⊕ ker q(T ).

Result 11:-Let T : V → V be linear. Suppose mT (X) = (X−λ1)m1 ...(X−λk)mk

be minimal polynomial of T .
(i) If p(T ) = θV , mT (X) divides p(X). In particular mT (X) divides pT (X)
that follows from Cayley Hamilton Theorem.
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(ii) If µ is an eigenvalue of T , Then µ = λi for some i
(iii) V = ker (T − λ1)m1 ⊕ ...⊕ ker (T − λk)mk

Definition 10:- Let V (λ) = {v ∈ V : ∃k ∈ N such that (T − λI)kv = θV }
is called generalized eigenvalue corresponding to the eigenvalue λ.

Definition 10:- Let T : V → V be linear. W ≤ V is called cyclic if ∃ v ∈ V ,
λ ∈ C , k ∈ N such that (T − λI)k = θV and {v, (T − λI)v, ..., (T − λI)k−1v}
is a basis for W .

Result 12:-(i) Let w be an eigenvector corresponding to eigenvalue µ , then
W = span (w) is cyclic.
(ii) Let W be T− invariant and cyclic. Take w1 6= θV ∈W ⇒ T (w1) ∈W
T (w1) = T (w1)− λw1 + λw1 = (T − λI)w1 + w1. Denote (T − λI)iw1 = wi+1.
T ((T−λI)w1) = T (w2) = (T−λI)w2+w2. like wise T (wi) = λwi+wi+1 for 1 ≤
i ≤ k−1 and T (wk) = λwk. Consider T |W : W →W with basis in reverse order

i.e. BW = {wk, ..., w1}. [M(T )]BW
looks like



λ 1
λ 1

λ 1
. . .

λ 1
λ


of size k× k . This matrix is called Jordan block of λ of size k. It is denoted by
Jk(λ).

Definition 12:- Let T : V → V be linear. T is said to be nilpotent of index
k if there exists k ∈ N such that T k = O but T k−1 6= O.

Result 13:- Let T be nilpotent of index k.
Suppose µ is an eigenvalue of T . There exists v 6= θV such that T (v) = µv
θv = T k(v) = µkv
⇒ µk = 0 = µ
By definition there exists w ∈ V such that (v 6= θV ) = T k−1w
⇒ ∃v 6= θV such that T (v) = θV = 0.v
⇒ 0 is an eigenvalue.

Result 14:- let A : V → V be a nilpotent map on a finite dimensional vec-
tor space over F . Assume that all the roots of the characteristics polynomial
lies in F . Then there exists a Jordan basis of V such that [M(T )] w.r.t. that
basis looks like a Jordan block or a matrix whose diagonal consists of Jordan
blocks.
Proof:- We prove this result by induction on dimension of V . If dim V = 1 and
as T is nilpotent T = O. Any non zero vector is a Jordan basis of V . If A = O
and dim V > 1 any basis of V is a Jordan basis. In this induction we assume
that the result is true for all non zero nilpotent maps on any finite dimensional
vector space with dimension less than n where n > 1. Let dim V = n and A be
non zero and nilpotent. As ker A 6= {θV } (as A is nilpotent) dim Im A < n. It
is also invariant under A. Restriction of A to W = Im A is again nilpotent on
W . (as W ≤ V ). On applying induction hypothesis we get a Jordan basis for
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W , say ,BJ = BJ1 ∪ ...∪BJK where each BJi is a Jordan string which acts as a
basis for Jordan blocks inside the Jordan form obtained from basis BJ under A.
Let BJ1 = {vi1, ..., vini

} with Avi1 = θV and Avij = vij−1 for 2 ≤ ni, of course
n1 + ...+ nk = dim Im A.
BJ is an basis for Im A, the set {vi1 : 1 ≤ i ≤ k} (first elements of the Jordan
string Ji) is a linearly independent subset of V and also subset of ker A. We
extend this set to a basis of ker A, say, {v11, ..., vk1, z1, ..., zr}. Each last element
vini
∈ Ji lies in Im A hence we can find vini+1 ∈ V such that Avini+1 = vini

.
Let Bi := BJi ∪ {vini+1} and B := ∪ki=1Bi ∪ {z1, ..., zr}. We have removed k
no of vectors from basis of Im A (vi1s) and included k no of vectors in basis of
Im A(vini+1s). Using rank nullity theorem we get |B| = n. We claim that B is
linearly independent.
Let (a11v11 + ... + a1n1+1v1n1+1) + ... + (ak1vk1 + ... + aknk+1v1nk+1) + b1z1 +
...+ brvr = θV ....(i)
On applying A on both sides we have A([a12v12 + ... + a1n1+1v1n1+1] + ... +
[ak2vk2 + ... + aknk+1v1nk+1]) = θV (as zj , vi1 ∈ ker A for 1 ≤ j ≤ r and
1 ≤ i ≤ k)
Since Avij = vij−1 for 1 ≤ i ≤ k and 2 ≤ j ≤ ni + 1, we get
(a12v11 + ...+ a1n1+1v1n1+1) + ...+ (a11v11 + ...+ aknk+1v1nk+1) = θV As vij ’s
appearing in this equation are linearly independent we deduce that aij = 0 for
1 ≤ i ≤ k and 2 ≤ j ≤ ni + 1
Thus (i) becomes a11v11 + ...+ ak1vk1 + b1z1 + ...+ brzr = θ. Vectors appearing
in this equation are basis for ker A , so all the coefficients in the equation are
zero. As a whole coefficient in equation (i) are zero. Hence B is linearly inde-
pendent. Now we need to show that B is a Jordan basis. Bi = {vi1, ..., vini+1}
with Avi1 = θV and Avij = vij−1 for 2 ≤ j ≤ ni + 1 is a basis for i th Jordan
block. Jk+m = {zm} for 1 ≤ m ≤ r is a basis as well as Jordan block. Hence
we have total k + r no of Jordan blocks in Jordan canonical form of A.

Result 15:- Let T : (V = Cn)→ V be linear over field C and M be the matrix
associated with the standard basis. mT (X) splits over C and let (X − λ) be a
linear factor of it. Clearly T −λI is nilpotent. This implies J = C−1(M −λI)C
is of Jordan form associated with the Jordan basis. i.e. C−1MC = J + λI is
Jordan form for M .

Result 16:-These are some important features of Jordan form of a linear map
which are helpful in determining the Jordan canonical form.

(i) The sum of sizes of the blocks involving a fixed eigenvalue is equal to the
algebraic multiplicity of that eigenvalue. Where algebraic multiplicity stands
for the multiplicity of the eigenvalue as a root of the characteristics polynomial.
Proof:- Let J be the canonical form of M . M and J are similar. i.e. their
exists an invertible matrix P such that M = P−1JP . Consider M − λI =
P−1JP −P−1λIP = P−1(J − λI)P . det (M −XI) = det (J −XI) as M − λI
is similar to J − λI. i.e. characteristics polynomials of A and J are same. The
eigenvalues of a Jordan block Jj(λ) is λ with algebraic multiplicity k.

(ii) The no of blocks involving an eigenvalue is equals to its geometric mul-
tiplicity, i.e. the dimension of the corresponding eigenspace.
Proof:- Eigenvalue λ of similar matrices have the same geometric multiplicity.
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In order to show this consider A,B ∈ L(V = Cn, Cn) and [M(A)], [M(B)] ∈
Mn(C) (matrix w.r.t. standard basis) be similar. Observe that Eλ(A) = ker
(A − λI) and Eλ(B) = ker (B − λI). As A is similar to B there exists an
invertible map P such that A = PBP−1. Take x ∈ Eλ(A) ⇒ (A− λI)x = θV
⇒ (PBP−1 − λI)(x) = P ((B − λI)(P−1x)) = θV
⇒ (B − λI)(P−1x) = θV (As P is invertible, P is into i.e. ker P = {θV })
⇒ P−1(x) ∈ Eλ(B)
Similarly taking x ∈ Eλ(B) we can show that P (x) ∈ Eλ(A) and Eλ(A) and
Eλ(B) are in bijection. From this it follows that dim Eλ(A) = Eλ(B).
Any Jordan block Jk(λ) corresponding to λ has one dimensional eigen space.
Hence no of blocks involving an eigenvalue is equals to dimension of Eλ as each
block corresponds to one dimensional eigenspace and total no of blocks corre-
sponds to dimension of Eλ(J) which is equals to geometric multiplicity of λ
corresponding to the original matrix.
(iii) The largest block involving an eigenvalue is equals the multiplicity of the
eigenvalue as a root of minimal polynomial.
Proof :- First of all observe that map T : (V = Ck) → Ck defined as T (c) =
(Jk(λ)− λIk×k)(c) is nilpotent of index k. Let B = {e1, ..., ek} be the standard
basis for Ck.

[M(T )]B = Jk(λ)− λIk×k =


0 1

. . .
. . .

. . . 1
0


Clearly T (e1) = 0.e1 + ...+ 0.en = θV
T (ei) = 0.e1 + ...+ 1.ei−1 + 0.ej + ...+ 0.ek = ej−1 for 2 ≤ i ≤ k
T k−1(ek) = T k−2(T (ek)) = T k−2(ek−1) = T k−3(ek−2) = ... = T (e2) = e1 6= θV
hence T k−1 6= O
T k(ei) = T k−i+1(e1) = θV for k ≤ k − i+ 1 ≤ 1 or 1 ≤ i ≤ k. T k = O
If J = diag (Jn1(λ1), ..., Jnk

(λk)) , then its minimal polynomial is the product
of minimal polynomials of Jn(λi).

Note 1:- J1(λ) looks like
(
λ
)
. Let T : V → V be linear. Let M be the

matrix associated with standard basis. Consider a Jordan canonical form J
corresponding to matrix M consisting of Jordan block J1 only. Clearly J is a
diagonal matrix. i.e. Jordan basis itself is an eigen basis. As largest block size
is 1 , multiplicity of eigenvalues is 1 i.e. minimal polynomial is a product of
distinct linear factors. For a fixed eigenvalue sum of sizes of the blocks is equals
to the no of blocks (as each and every block has size 1).In terms of geometric
and algebraic multiplicity, they have to be the same for all possible eigenvalues.
Now let M be any matrix associate with standard basis. If M has distinct
eigenvalues, then characteristics polynomial will have distinct linear factors so
also minimal polynomial have distinct linear factors. i.e. M is diagonalizable.
It could be possible that M may not have distinct eigenvalue but M is diag-
onalizable. For that we need to have algebraic multiplicity same as geometric
multiplicity or minimal polynomial is product of distinct linear factors. We can
also say it like this. If minimal polynomial has atleast one repeated linear factor
then M is not diagonalizable.

Problem 1:-
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The characteristics polynomial of A is (X − 1)3(X − 2)2 and its minimal poly-
nomial is (X − 1)2(X − 2). What is its Jordan form?
Solution :-Sum of sizes of blocks for eigenvalue 1 is 3 and maximum size of
Jordan block for 1 is 2. For eigenvalue 1 there is one J2(1) and one J1(1). For
eigenvalue 2 sum of sizes of the block is 2 with at most single size of the block.
So for eigenvalue 2 there are two J1(2) block. Let J be Jordan form of A.

J =


J2(1)

J1(1)
J1(2)

J1(2)

 =


1 1
0 1

1
2

2


Problem 2:- Let A ∈Mn(C). Prove that A is similar to its transpose AT .
Solution :- Consider S : Cn → Cn defined as T (c) = Ac. As A ∈ Mn(C) char-
acteristics polynomial splits over C. From result-15 it follows that there exists
a Jordan basis BJ for Cn such that matrix associated with this is of Jordan
canonical form. Say it J . As A is the matrix associated with the standard
basis, A and J are similar. There exists P ∈ Mn(C) which is invertible such
that A = P−1JP
AT = (P−1JP )T = PTJT (P−1)T = (PT )JT (PT )−1. Hence AT is similar to
JT . Now if we show that J and JT are similar we are done. Let there are k no of
Jordan blocks inside J . We denote them as J1, ..., Jk. Let BJi be Jordan basis
corresponding to Ji. Clearly BJ = BJ1 ∪ .... ∪ BJk . Let BJi = {vi1, ..., vini}.
Note that J is obtained when vectors in BJi are in the specific order as taken.
Take B

′

Ji
= {vini

, ..., vi1} so that B
′

J = B
′

J1
∪ ....∪B′

Jk
. JT = [M(S)]B′

J
. Hence

there exists a basis for Cn such that JT = [M(S)]B′
J
. J is similar to JT .

Problem 3:- Show that there is no A ∈ M3(R) whose minimal polynomial is
X2 + 1 but there is B ∈ M2(R) as well as C ∈ M3(C) whose minimal polyno-
mial is X2 + 1.
Solution:- A ∈ M3(R) its characteristics polynomial is a third degree polyno-
mial. It has atleast one real root. X2 + 1 does not have any real root. Hence
X2 + 1 can not be the minimal polynomial of A as it contradicts that minimal
polynomial vanishes at roots of characteristics polynomial.

Take A =

(
0 −1
1 0

)
.

Clearly A ∈M2(R) satisfies X2 +1 and there is no polynomial of degree less
than 2 that A satisfies.

Take A =

 i 0 0
0 i 0
0 0 −i

 Clearly A ∈ M3(C) and X2 + 1 is its minimal poly-

nomial as i,−i are the only eigenvalues of A.

Problem 4:- Let Ak+1 = A for some k ∈ N . Show that A is diagonalizable.
Solution :- Ak+1 = A
⇒ A(AK − I) = O
i.e. either A = O or A satisfies Xk − 1 = 0 or k th root of unity. As k th root
of unity are distinct eigenvalues are also distinct. Hence A is diagonalizable.
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Problem 5:- Show that

(
cosφ −sinφ
sinφ cosφ

)
and

(
eiφ 0
0 e−iφ

)
are similar.

Solution:- On computing we get eiφ and e−iφ as two eigenvalues. When φ = 0 ,
eiφ = e−iφ = 0. The both matrix turns out to be the same. So they are similar
when φ = 0. When φ 6= 0 eigenvalues are different. Minimal polynomial will
be same as characteristics polynomial which is equals to (X − eiφ)(X − e−iφ).

Jordan block will be

(
eiφ 0
0 e−iφ

)
. As J is similar to A,

(
eiφ 0
0 e−iφ

)
is

similar to A =

(
cosφ −sinφ
sinφ cosφ

)

Result 17:-card(A)card(B)+card(C) = card(A)card(B)card(A)card(C)

Proof:- We wish to define a bijection from ABtC to AB ×AC . Let φ be such a
map that sends f ∈ ABtC to φ(f) ∈ AB × AC . f is function from B t C → A
i.e. f(1, b) and f(2, c) ∈ A for some (1, b), (2, c) ∈ B t C . φ(f) = (φBf , φ

C
f ).

φBf ∈ AB i.e. φBf (b) ∈ A. On setting φBf (b) = f(1, b) will serve our purpose.

Similarly for c ∈ C , φCf (c) = f(1, c).

For bijection we define ψ : AB × AC → ABtC in the manner explained earlier
as ψf (1, b) = fB(b) and ψf (2, c) = fC(c). Now we need to show that φψ = I.
Consider φψ(f) where f = (fB , fC) ∈ AB×AC . Let g = ψ(f) , φ(g) ∈ AB×AC
so φ(g) = (φBg , φ

C
g ). Now φBg (b) = g(1, b) ⇒ φBψ(f)(b) = ψ(f(1, b)) = fB(b)

⇒ φψ((fB)(b)) = fB(b)
Similarly we can show that φψ((fC)(c)) = fC(c). Likewise we can show that
ψφ = I

Result 18 :- (card(A)card(B))card(C) = card(A)card(B)card(C)

Proof :- We wish to define a bijection from (AB)C to AB×C . Let φ be a map
that sends an element f ∈ (AB)C to φ(f) ∈ AB×C . So we have a given func-
tion f ∈ (AB)C and we want to send it to φ(f) ∈ AB×C . As f ∈ (AB)C by
definition of (AB)C , f is a function from C → AB . For an element c ∈ C,
f(c) ∈ AB . By definition , f(c) is a function from B → A i.e. for an element
b ∈ B , f(c)(b) ∈ A. Let us consider φ(f) . φ(f) is a function from B×C → A.
For (b, c) ∈ B × C we wish to send φ(f)(b, c) to an element in A. For a given f
, f(c)(b) ∈ A. Hence by taking φ(f)(b, c) = f(c)(b) will serve our purpose for a
given f ∈ (AB)C .
Now we need to show that φ : (AB)C → AB×C is a bijection. In order to show
that we wish to find a function ψ : AB×C → (AB)C such that ψφ = φψ = I
where I is the identity map to the corresponding domain. Fix a f ∈ AB×C

, f : B × C → A. For (b, c) ∈ B × C , f(b, c) ∈ A . ψ(f) ∈ (AB)C i.e.
ψ(f)(c) ∈ AB or ψ(f)(c)(b) ∈ A. So taking ψ(f)(c)(b) = f(b, c) will serve our
purpose.
We need to check whether ψφ = φψ = I or not. First take ψ(φ(f)) for a fixed
f ∈ (AB)C . ψ(φ(f)(b, c)) = ψ(f(c)(b) = f(b, c)) for any fixed (b, c) ∈ B × C.
Similarly we can prove φψ = I
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